3D-Printed Stator Bore Tool

September 18, 2019
3D-Printed Stator Bore Tool

Kennametal has developed a 3D-printed stator bore tool to meet growing customer demand for lighter weight tooling solutions used to machine components for hybrid and electric vehicles. E-mobility components are typically machined on small, low-horsepower CNC machining centers that require lighter weight tooling solutions. Kennametal’s 3D printed stator bore tool weighs half that of the conventionally manufactured version, while still meeting accuracy, roundness and surface finish requirements for aluminum motor body boring.

“The main bore, that houses the stator of an electric motor measures approximately 250 mm in diameter (9.84") and approximately 400 mm (15.74") in length, with a smaller bearing bore at the bottom,” said Harald Bruetting, manager, program engineering. “When manufactured using conventional means, a reamer for this type of application would weigh more than 25 kilograms (55 lb.), far too heavy for the existing machine tool or for an operator working with the tool.”

Bruetting and Kennametal’s Solution Engineering Group turned to the company’s in-house additive manufacturing capabilities to 3D-print a strong but lightweight indexable tool, equipped with proven Kennametal technologies, including fine adjustable RIQ reaming inserts for high precision finishing and a KM4X adaptor for maximum rigidity. The tool also features internal 3D-printed cooling channels that help maximize productivity and tool life.

“By using metal powder bed 3D-printing together with finite element analysis software, we were able to design and build a tool that brought the moment of inertia very close to the spindle face, increasing its rigidity while meeting the customer’s weight restrictions,” said Werner Penkert, manager, future solutions. “It is an excellent example of how Kennametal is using advanced manufacturing technology to help meet our customer’s unique challenges.”

Two versions of the tool were built, one with a carbon-fiber tube, the other using a 3D-printed metal tube. The results were impressive. The tool with the 3D-printed tube weighed in at 10.7 kg (23.6 lb.) and the carbon fiber version at 9.5 kg (20.9 lb.), less than half of their conventional counterparts.

Related Glossary Terms

  • boring

    boring

    Enlarging a hole that already has been drilled or cored. Generally, it is an operation of truing the previously drilled hole with a single-point, lathe-type tool. Boring is essentially internal turning, in that usually a single-point cutting tool forms the internal shape. Some tools are available with two cutting edges to balance cutting forces.

  • centers

    centers

    Cone-shaped pins that support a workpiece by one or two ends during machining. The centers fit into holes drilled in the workpiece ends. Centers that turn with the workpiece are called “live” centers; those that do not are called “dead” centers.

  • computer numerical control ( CNC)

    computer numerical control ( CNC)

    Microprocessor-based controller dedicated to a machine tool that permits the creation or modification of parts. Programmed numerical control activates the machine’s servos and spindle drives and controls the various machining operations. See DNC, direct numerical control; NC, numerical control.

  • lapping compound( powder)

    lapping compound( powder)

    Light, abrasive material used for finishing a surface.

  • reamer

    reamer

    Rotating cutting tool used to enlarge a drilled hole to size. Normally removes only a small amount of stock. The workpiece supports the multiple-edge cutting tool. Also for contouring an existing hole.

Additional Products from Kennametal Inc.

Romicron fine-boring systems from Kennametal allow users to dial in extremely close tolerances while the tool is mounted in the machine tool, saving time and easing training.

ATI Stellram based at Ibstock U.K. have introduced a multi-purpose range of ceramic abrasives.

New Beyond KYS40-grade solid ceramic endmills from Kennameta are presenting orders-of-magnitude improvements in machining high-strength nickel-based alloys, roughing at cutting speeds up to 3,300 SFM (1000 m/min) with tool life two to three times longer than comparable solid-carbide tools.

These five new Stellram NL turning grades are specifically engineered to provide optimal performance in a given application and workpiece material resulting in increased metal removal rates, improved surface finishes and up to 30 percent longer tool life, according to the company.

One of the most fundamental keys to running an efficient and cost-effective plant is having the right tool in the right place at the right time. While the cost of a milling or turning insert may range from a few dollars to significant investment, not having that tool available when needed can shut…

UltraFlex, a new portfolio of wear-resistant surface treatments from Kennametal, brings industry-leading wear performance to components with complex geometries in power generation, oil and gas, and many other industries.

For manufacturers facing complex or stringent machining or finishing issues, electrochemical machining (ECM) is a notable process by which material can be removed inµm increments, reaching areas unreachable by other methods. To support the ECM process, Kennametal Extrude Hone has designed an…

The KSRM line of cutters is a new, multipurpose milling solution from Kennametal specifically engineered for titanium and stainless steel applications.

The "Kennametal Innovations" app features interactive, cutting-edge animations and real-world demonstrations of Kennametal's productivity-enhancing technologies for machining and industrial processes.

Kennametal introduces the revolutionary new Rodeka series of inserts for indexable milling.