3D-Printed Stator Bore Tool

September 18, 2019
3D-Printed Stator Bore Tool

Kennametal has developed a 3D-printed stator bore tool to meet growing customer demand for lighter weight tooling solutions used to machine components for hybrid and electric vehicles. E-mobility components are typically machined on small, low-horsepower CNC machining centers that require lighter weight tooling solutions. Kennametal’s 3D printed stator bore tool weighs half that of the conventionally manufactured version, while still meeting accuracy, roundness and surface finish requirements for aluminum motor body boring.

“The main bore, that houses the stator of an electric motor measures approximately 250 mm in diameter (9.84") and approximately 400 mm (15.74") in length, with a smaller bearing bore at the bottom,” said Harald Bruetting, manager, program engineering. “When manufactured using conventional means, a reamer for this type of application would weigh more than 25 kilograms (55 lb.), far too heavy for the existing machine tool or for an operator working with the tool.”

Bruetting and Kennametal’s Solution Engineering Group turned to the company’s in-house additive manufacturing capabilities to 3D-print a strong but lightweight indexable tool, equipped with proven Kennametal technologies, including fine adjustable RIQ reaming inserts for high precision finishing and a KM4X adaptor for maximum rigidity. The tool also features internal 3D-printed cooling channels that help maximize productivity and tool life.

“By using metal powder bed 3D-printing together with finite element analysis software, we were able to design and build a tool that brought the moment of inertia very close to the spindle face, increasing its rigidity while meeting the customer’s weight restrictions,” said Werner Penkert, manager, future solutions. “It is an excellent example of how Kennametal is using advanced manufacturing technology to help meet our customer’s unique challenges.”

Two versions of the tool were built, one with a carbon-fiber tube, the other using a 3D-printed metal tube. The results were impressive. The tool with the 3D-printed tube weighed in at 10.7 kg (23.6 lb.) and the carbon fiber version at 9.5 kg (20.9 lb.), less than half of their conventional counterparts.

Related Glossary Terms

  • boring

    boring

    Enlarging a hole that already has been drilled or cored. Generally, it is an operation of truing the previously drilled hole with a single-point, lathe-type tool. Boring is essentially internal turning, in that usually a single-point cutting tool forms the internal shape. Some tools are available with two cutting edges to balance cutting forces.

  • centers

    centers

    Cone-shaped pins that support a workpiece by one or two ends during machining. The centers fit into holes drilled in the workpiece ends. Centers that turn with the workpiece are called “live” centers; those that do not are called “dead” centers.

  • computer numerical control ( CNC)

    computer numerical control ( CNC)

    Microprocessor-based controller dedicated to a machine tool that permits the creation or modification of parts. Programmed numerical control activates the machine’s servos and spindle drives and controls the various machining operations. See DNC, direct numerical control; NC, numerical control.

  • lapping compound( powder)

    lapping compound( powder)

    Light, abrasive material used for finishing a surface.

  • reamer

    reamer

    Rotating cutting tool used to enlarge a drilled hole to size. Normally removes only a small amount of stock. The workpiece supports the multiple-edge cutting tool. Also for contouring an existing hole.

Additional Products from Kennametal Inc.

The HiPACS drilling and countersinking system can be utilized on all machines typically used for aerospace applications. In less stable conditions such as robot end effectors, the diamond coated carbide drills offer excellent tool life and hole quality. PCD-tipped drills, on the other hand, excel…

The FBX drill is part of a tooling concept specifically developed to maximize metal removal rates and decrease cycle times when machining aerospace structural components. Quickly removing large amounts of material remains a challenge for these types of components. Traditionally, the first process…

Extremely sharp cutting edges and low-friction rake surfaces eliminate concerns over built-up- edge. Low friction machining also produces superior surfaces in finishing operations, such as reaming. Surface roughness of Ra 0,1–0,8 μm (0.0025–0.02 μ-in) is achievable – far superior to conventional…

he HARVI I TE ball nose end mill is available in two different lengths, both with a diameter range from 2 to 20 mm (1/16" to 1"). The regular length is the first choice for 3D copy milling operations, while the long version offers sufficient length-of-cut (up to 4sD) for many applications…

The drill’s patented point thinning, special gashing, and a 143°-point angle provide excellent self- centering capabilities and reduce thrust, keeping the drill running straight even at the highest feed rates. In addition, four margin lands deliver maximum stability when drilling cross holes and…

With fixed and adjustable pocket seats, the new milling cutter provides the option for semi-finishing as well as fine-finishing applications, exceeding the highest surface quality requirements. With carbide, ceramic and PcBN inserts, this new tool is a flexible, cost-effective and user-friendly…

Drilling flat-bottom holes is a challenge. So is drilling on inclined or curved surfaces, drilling into cross holes, drilling stacked plates, and drilling into cross holes, stacked plates and castings and other rough surfaces. Not anymore. Leveraging the success of its KenTIP FS modular drill,…

Kennametal announced its latest innovation in high-velocity aluminum roughing, the KOR 5 solid-carbide endmill. With this 5-flute endmill table feed rates increase up to 66% compared to commonly used 3-flute tools—redefining productivity for aircraft manufacturers and their suppliers.

Kennametal announced its latest innovation in hard turning, KBH10B and KBH20B PCBN grades, double-sided inserts for materials up to 65 HRC. The new grades deliver high productivity and long tool life when turning tool steels and other hardened materials.

Kennametal introduced another high-performance cutting tool, the B21*SGL solid-carbide drill with through-coolant. Designed for stainless steel, nickel and cobalt-based alloys, the B21*SGL with patented point geometry and monolayer PVD AlTiN coating, delivers improved productivity and longer tool…