Sumomill Endmills

June 01, 2011

A new family of ISCAR endmills extends the benefits of tangential SUMOMILL inserts to chamfering, countersinking and face milling. Featuring the proprietary SUMO TEC coating treatment, ISCAR's SUMOMILL have outperformed competitors by an average of 35 percent in many applications worldwide.

The tangential orientation creates a fundamentally stronger cutting platform, which leads to longer edge life and elimination of fracture failures at higher cutting rates, even in unfavorable conditions. SUMOMILL tangential endmills, all four-flute in 12mm diameters, come in 30, 45 and 60 degree geometries.

In facemilling applications they can run at very high table feeds due to their small diameter and high flute density. The proprietary SUMO TEC surface treatment produces a much smoother, more lubricious surface on the insert, with fewer thermal stresses and stress factors than would be found in an untreated plain PVD or CVD coating. This leads to cooler cutting (heat is a key enemy of machining inserts), less friction and much reduced risk of insert rupture. On average, SUMO TEC coated tools have proven to literally double throughput and reliably extend insert life by 40 percent vs. identical but untreated inserts.

Related Glossary Terms

  • chamfering

    chamfering

    Machining a bevel on a workpiece or tool; improves a tool’s entrance into the cut.

  • chemical vapor deposition ( CVD)

    chemical vapor deposition ( CVD)

    High-temperature (1,000° C or higher), atmosphere-controlled process in which a chemical reaction is induced for the purpose of depositing a coating 2µm to 12µm thick on a tool’s surface. See coated tools; PVD, physical vapor deposition.

  • coated tools

    coated tools

    Carbide and high-speed-steel tools coated with thin layers of aluminum oxide, titanium carbide, titanium nitride, hafnium nitride or other compounds. Coating improves a tool’s resistance to wear, allows higher machining speeds and imparts better finishes. See CVD, chemical vapor deposition; PVD, physical vapor deposition.

  • countersinking

    countersinking

    Cutting a beveled edge at the entrance of a hole so a screw head sits flush with the workpiece surface.

  • facemilling

    facemilling

    Form of milling that produces a flat surface generally at right angles to the rotating axis of a cutter having teeth or inserts both on its periphery and on its end face.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • physical vapor deposition ( PVD)

    physical vapor deposition ( PVD)

    Tool-coating process performed at low temperature (500° C), compared to chemical vapor deposition (1,000° C). Employs electric field to generate necessary heat for depositing coating on a tool’s surface. See CVD, chemical vapor deposition.

Additional Products from Iscar USA

The NEOTURN XNMG demonstrates excellent chip control and highly stable tool life in a wide range of applications. The NEOTURN system also enables machining complicated workpiece shapes close to the tail stock where space is limited. This can be performed without replacing the holder and decreases…

When mounted in a NEOFEED tool, the insert enables a positive tool rake angle which assures smooth cutting and reduced cutting forces and power consumption. The insert pocket has a dovetail shape that provides rigid and reliable insert clamping and improves the a cutter’s capability to withstand…

135° Point Geometry – Split point geometry for superior drilling penetration and accuracy. Double-Margin Design – For improved drilling stability and smooth surface finish. Polished Flutes - Chip evacuation is improved during deep-hole drilling when the flutes are polished. Coolant Holes – Cooling…

The spline connection designation is SP… where the no. indicates the connection size.
The general duty cutting geometry of the heads is suited for efficient slot milling on a wide spectrum of workpiece materials for maximum depth of cut.

ISCAR is introducing 17 mm diameter PENTA inserts, designed for machining small size parts with up to 4 mm maximum grooving depth capability. The inserts are available in a range of widths from 0.25 to 3.18 mm, with different edge configurations for parting, grooving, turning and threading.

The XNMU inserts are the original concept of double-sided inserts with 4 right-hand and 4 left-hand helical cutting edges for slot milling cutters. These inserts are made of SUMOTEC carbide grades, designed for milling alloy steel, ferritic and martensitic stainless steel, and cast-iron. 

The drill bodies are available in 3xD and 5xD length to diameter ratios. The inserts are supplied in a specifically developed user-friendly key, enabling easy mounting with no setup time.

The milling heads have been designed for shoulder roughing, semi-finishing and finishing applications with ramping down capability. The milling heads are available in .312-1.00” diameter range.

A new family of tools and economical 5 pocket adapters for existing TANG-GRIP inserts in sizes of 2 and 3mm. These new adapters will allow parting applications of bar diameters up to Ø45mm. A new SLIM-GRIP 1.2-1.6mm inserts for a pentagonal adapter suitable for parting up to 22mm bar diameter.

The advanced design combines a strong insert structure, a durable cutter body, secure mounting, and advanced carbide grades. This innovative solution enables face and square shoulder milling, while providing an additional option for milling close to shoulders where there are workpiece or work…