DDHM CVD Diamond-Tipped Tool System

March 25, 2021
Cost-Effective Drilling and Countersinking

Paul Horn GmbH is proud to present DDHM, its CVD diamond-tipped tool system for cost-effective drilling and countersinking operations in solid carbides and sintered ceramics with a hardness of up to 3,000 HV. With the launch of this drilling system, HORN is further expanding its range of products for machining fully sintered carbides.  With new geometries for producing precise core holes, the tool system allows machining to take place on conventional milling or turning centers.  Cost-intensive and time-consuming grinding processes are no longer needed. Expensive new machinery can potentially be avoided by taking advantage of the DDHM tool system.

The DDHM system is aimed primarily at customers in the tool and die-making industries. The focus is on machining carbide punches and dies efficiently. The tool system also offers significant advantages in other areas such as the medical and aerospace sectors, the automotive industry, and punching, forging and forming technology. The diamond tools enable shorter throughput times, high surface quality, lower overall costs, greater flexibility within the production process and longer tool life. The drills can be used for producing holes in solid material to a maximum depth of ten times the diameter. The CVD-D tipped drills have a two-edged design and are available in diameters ranging from 2 mm (0.079”) to 10 mm (0.394”). All versions boast internal channels for cooling with air.

Related Glossary Terms

  • Vickers hardness number ( HV)

    Vickers hardness number ( HV)

    Number related to the applied load and surface area of the permanent impression made by a square-based pyramidal diamond indenter having included face angles of 136º. The Vickers hardness number is a ratio of the applied load in kgf, multiplied by 1.8544, and divided by the length of diagonal squared.

  • centers

    centers

    Cone-shaped pins that support a workpiece by one or two ends during machining. The centers fit into holes drilled in the workpiece ends. Centers that turn with the workpiece are called “live” centers; those that do not are called “dead” centers.

  • ceramics

    ceramics

    Cutting tool materials based on aluminum oxide and silicon nitride. Ceramic tools can withstand higher cutting speeds than cemented carbide tools when machining hardened steels, cast irons and high-temperature alloys.

  • chemical vapor deposition ( CVD)

    chemical vapor deposition ( CVD)

    High-temperature (1,000° C or higher), atmosphere-controlled process in which a chemical reaction is induced for the purpose of depositing a coating 2µm to 12µm thick on a tool’s surface. See coated tools; PVD, physical vapor deposition.

  • conventional milling ( up milling)

    conventional milling ( up milling)

    Cutter rotation is opposite that of the feed at the point of contact. Chips are cut at minimal thickness at the initial engagement of the cutter’s teeth with the workpiece and increase to a maximum thickness at the end of engagement. See climb milling.

  • countersinking

    countersinking

    Cutting a beveled edge at the entrance of a hole so a screw head sits flush with the workpiece surface.

  • gang cutting ( milling)

    gang cutting ( milling)

    Machining with several cutters mounted on a single arbor, generally for simultaneous cutting.

  • grinding

    grinding

    Machining operation in which material is removed from the workpiece by a powered abrasive wheel, stone, belt, paste, sheet, compound, slurry, etc. Takes various forms: surface grinding (creates flat and/or squared surfaces); cylindrical grinding (for external cylindrical and tapered shapes, fillets, undercuts, etc.); centerless grinding; chamfering; thread and form grinding; tool and cutter grinding; offhand grinding; lapping and polishing (grinding with extremely fine grits to create ultrasmooth surfaces); honing; and disc grinding.

  • hardness

    hardness

    Hardness is a measure of the resistance of a material to surface indentation or abrasion. There is no absolute scale for hardness. In order to express hardness quantitatively, each type of test has its own scale, which defines hardness. Indentation hardness obtained through static methods is measured by Brinell, Rockwell, Vickers and Knoop tests. Hardness without indentation is measured by a dynamic method, known as the Scleroscope test.

  • milling

    milling

    Machining operation in which metal or other material is removed by applying power to a rotating cutter. In vertical milling, the cutting tool is mounted vertically on the spindle. In horizontal milling, the cutting tool is mounted horizontally, either directly on the spindle or on an arbor. Horizontal milling is further broken down into conventional milling, where the cutter rotates opposite the direction of feed, or “up” into the workpiece; and climb milling, where the cutter rotates in the direction of feed, or “down” into the workpiece. Milling operations include plane or surface milling, endmilling, facemilling, angle milling, form milling and profiling.

  • turning

    turning

    Workpiece is held in a chuck, mounted on a face plate or secured between centers and rotated while a cutting tool, normally a single-point tool, is fed into it along its periphery or across its end or face. Takes the form of straight turning (cutting along the periphery of the workpiece); taper turning (creating a taper); step turning (turning different-size diameters on the same work); chamfering (beveling an edge or shoulder); facing (cutting on an end); turning threads (usually external but can be internal); roughing (high-volume metal removal); and finishing (final light cuts). Performed on lathes, turning centers, chucking machines, automatic screw machines and similar machines.