AM Cube 3D Metal Printer

January 27, 2021
AM Cube Highly Flexible Additive Machine

The CHIRON Group has expanded its core competencies - metalworking and automation – to include additive manufacturing. “As a result, we are now a single-source provider of complete solutions for all components that cannot be produced using conventional manufacturing methods alone,” said Axel Boi, Head of Additive Manufacturing at Chiron Group. “Laser metal deposition is the company's technology of choice for additive manufacturing, including coating, 3D-printing, and repair,” he said.

"The Additive Manufacturing department is a start-up within our own business group," explains Axel Boi, "With this 3D metal printer, made by CHIRON, we are creating a facility for manufacturing larger components with long procurement times and high material prices. This technology can be used effectively in the mechanical engineering, tool manufacturing, energy production and aerospace sectors. These are all important target sectors for the CHIRON Group", the expert adds.

The very compact Chiron AM Cube is an easy to use 3D metal printer for manufacturing large and complex components. It is suitable for coating and repairing components up to 500 mm in size, for cylindrical components up to a meter long and for the near-net-shape production of semi-finished products. The AM Cube can be provided with up to 3 deposition heads with patented, hardwired energy, material and data supply. Max. workpiece dimensions are: 3-axis: 1,000 x 400 x 500 mm; 4-axis: Ø 300 x 1,000 mm; and 5-axis: Ø 500 x 500 mm.

Automatic deposition-head changing permits wire or powder feedstock material for 3D printing or coating, internally or externally. Its modular design means the AM Cube can be provided as a 3-axis, 4-axis, or 5-axis system.

Unlike other 3D metal printers, the deposition head on the CHIRON Group's AM Cube can be changed during an active printing/ coating process. This allows different process requirements to be fulfilled: For example, one deposition head can be used to achieve a high-quality surface finish, while another can be used to achieve a high deposition volume. The automatic head change function enables these properties to be combined in a single workpiece. The AM Cube has three deposition heads in total and additionally allows the deposited material to be changed. Wire and powder can be deposited in different phases of the same manufacturing process.

Like CHIRON Group CNC machining centers, the AM Cube uses a conventional, Cartesian coordinate system. Operation and programming are both intuitive. The system is programmed either using a standardized DIN ISO code or, for complex components, using a CAD/CAM software tool. All aspects of the system can be controlled using tried-and-tested Siemens components, from hardware to the HMI through to programming of the AM Cube.

The Chiron Process

With laser metal deposition, a feedstock material (Fe/Ni/Co-based) is melted using a laser beam and fused to the substrate (steel or nickel-based alloys) by metallurgical bonding. One of the benefits of this process is that it results in lower thermal loading – it is also excellent for repairing damage, reinforcing components at selected points and restoring the original geometry of components by means of material deposition.

With wire-based laser metal deposition (LMD-W) technology, the laser beam melts the base material – in this case wire – and the melt fuses together and solidifies. This enables complex geometries to be created, as the workpiece is built up layer by layer. One significant advantage of wire is its high deposition rates. The laser is flexible and suitable both for fine surfaces and large build-up rates. The material feed in the AM Cube is in the form of a coaxial wire feed that works in all welding directions. The material is fed in clean and 100 percent of it is utilized. To prevent oxidation, the deposition process is performed with shielding gas in a sealed system.

Powder-based laser metal deposition (LMD-P) process may also used on the Chiron AM Cube. In this case, the feedstock material that is fed to the weld pool (otherwise known as "melt pool") is in powder form – ideal for thin coatings. The coaxial nozzle means that this process works in any welding direction.

Related Glossary Terms

  • centers

    centers

    Cone-shaped pins that support a workpiece by one or two ends during machining. The centers fit into holes drilled in the workpiece ends. Centers that turn with the workpiece are called “live” centers; those that do not are called “dead” centers.

  • computer numerical control ( CNC)

    computer numerical control ( CNC)

    Microprocessor-based controller dedicated to a machine tool that permits the creation or modification of parts. Programmed numerical control activates the machine’s servos and spindle drives and controls the various machining operations. See DNC, direct numerical control; NC, numerical control.

  • feed

    feed

    Rate of change of position of the tool as a whole, relative to the workpiece while cutting.

  • lapping compound( powder)

    lapping compound( powder)

    Light, abrasive material used for finishing a surface.

  • metalworking

    metalworking

    Any manufacturing process in which metal is processed or machined such that the workpiece is given a new shape. Broadly defined, the term includes processes such as design and layout, heat-treating, material handling and inspection.

  • modular design ( modular construction)

    modular design ( modular construction)

    Manufacturing of a product in subassemblies that permits fast and simple replacement of defective assemblies and tailoring of the product for different purposes. See interchangeable parts.