

Shop 31

Department of the Nato

Certificate of Apprenticeship THOMAS V. KOWALSKI

is certified as balong fulfilled the requirements of apprenticeship under standards perserierb be the Department of the Many, and is qualifieb as a skilled juntneyworker

Machinist

and is entitled to all rights and privileges pertaining therein.

Commonwealth of Pennsylvania mourney of Labor AND Provens

Gertylicate of Completion of Apprenticeship The Descention Thomas V. Kowalski

Set Ser

antures this

Hand Tapping

- Thread Cutting Sequence
- Thread Profile Development

Thread Profile Emuge Toolmakers Set Development ****** F **F** for Finisher Nr.2 Nr.2 **No.2 Semi-Rough** ulletNr.1 No.1 "Z" ******** **No.1** Rougher No.1"Z" **Rougher with Pilot**

Avoid Tap Breakage and Smile More.....

Thread Profile Emuge Toolmakers Set Development ****** F **F** for Finisher Nr.2 Nr.2 **No.2 Semi-Rough** ulletNr.1 No.1 "Z" ******** **No.1** Rougher No.1"Z" **Rougher with Pilot**

Drills and Taps are linked.....

like Peanut Butter and Jelly!!!!!

- All Taps need a Drilled Hole
- A Precision Bore!!!!!
- Minor Diameter
- Specific Size Range
- Larger Sizes for Machine Taps

UNC

Unified coarse thread ASME B1.1, Table 2

Nominal Size				Minor thre the interr (Tol.	Rec. tap drill size	
D			Р [T.P.I.]	D ₁ min.	D ₁ max.	
No.	1	(0.073)	64	0.0561	0.0622	0.0595
No.	2	(0.086)	56	0.0667	0.0737	0.0700
No.	3	(0.099)	48	0.0764	0.0845	0.0820
No.	4	(0.112)	40	0.0849	0.0939	0.0890
No.	5	(0.125)	40	0.0979	0.1062	0.1015
No.	6	(0.138)	32	0.1040	0.1140	0.1110
No.	8	(0.164)	32	0.1300	0.1390	0.1360
No.	10	(0.190)	24	0.1450	0.1550	0.1520
No.	12	(0.216)	24	0.1710	0.1810	0.1770
1/4			20	0.1960	0.2070	0.2040
5/16			18	0.2520	0.2650	0.2610
3/8			16	0.3070	0.3210	0.3160
7/16			14	0.3600	0.3760	0.3680
1/2			13	0.4170	0.4340	0.4219
		9/16	12	0.4720	0.4900	0.4844
		5/8	11	0.5270	0.5460	0.5313
3/4			10	0.6420	0.6630	0.6563
7/8			9	0.7550	0.7780	0.7656
1			8	0.8650	0.8900	0.8750

Minor Diameter Size Range (% of Thread)

- According to Thread Tolerance
- Larger Sizes for Machine Taps vs Hand Taps
- Larger for deeper threads
- Larger for stronger materials

1. Workpiece Material

2. Material Condition

3. Hole Type

4. Thread Depth or Thread Length

5. Thread Size and Tolerance

USA Catalog 520

671 pages

- *Machine (Cutting) Taps
- *Cold-Forming Taps
- *MultiTAP
- *Tap Extensions
- *Solid Carbide Thread Mills and Thrillers
- *Indexable Insert Thread Mills Gigant-IC
- *EF Drills
- *Thread Gages
- *Tap Holders

1. Workpiece Material

Chart ISO P M K N S & H

Material Specification, Trade Name 1018, 304, Inconel, & 6Al4V

2. Material Condition

Hardness, Tensile Strength 17-4-PH H900 vs 17-4PH A

Application – Material		Hardness Range			Material Examples		
			HRC	BHN	N/mm ²		
		Steel materials					
	1.1	Cold-extrusion steels, Construction steels, Free-cutting steels, etc.		≤ 180	≤ 600	1010 / 1018 / 1020 / 12L14 / 12L15 / A36 / T1	
	2 .1	Construction steels, Cementation steels, Steel castings, etc.	≤ 22	≤ 235	≤ 800	A36 / T1 / 1030-1095 / 4140 / 4340 / 8620	
Ρ	3 .1	Cementation steels, Heat-treatable steels, Cold work steels, etc.	≤ 31	≤ 295	≤ 1000	4140 / 4340 / 8620 / P20 / H13 / D2 / A2 / S7 / H1150	
	4.1	Heat-treatable steels, Cold work steels, Nitriding steels, etc.	≤ 38	≤ 355	≤ 1200	4140 / 4340 / 8620 / P20 / H13 / D2 / 300M / 52100 / M1-M42	
	5.1	High-alloyed steels, Cold work steels, Hot work steels, etc.	≤ 44	≤ 415	≤ 1400	4140 / 4340 / 8620 / P20 / H13 / D2 / 300M / 52100	
		Stainless steel materials					
	1.1	Ferritic, martensitic	< 29	< 280	< 950	410 / 440 / 440C / 17-4 PH	
M	2.1	Austenitic	≤ 29	≤ 280	≤ 950	303 / 304 / 316 / 316L / 321	
	3.1	Austenitic-ferritic (Duplex)	≤ 35	≤ 325	≤ 1100		
	4.1	Austenitic-ferritic heat-resistant (Super Duplex)	≤ 39	≤ 370	≤ 1250		
		Cast materials					
	1.1	Cast iron with lamellar graphite (GJL)		30 - 75	100 - 250	Grey cast irons G10-GG40	
	1.2 2.1 2.2	Cast iron with nodular graphite (GJS)		75 - 135 105 - 150 150 - 265	250 - 450 350 - 500 500 - 900	Nodular GGG40-GGG70	
<u> </u>	3.1	Cast iron with vermicular graphite (GJV)		90 - 120	300 - 400	Compost graphito iron (CCI)	
	4.1	Malleable cast iron (GTMW, GTMB)		70 - 145	250 - 500	White item	
	4.2	Non ferrous materials		150 - 235	500 - 800	white from	
		Aluminum allovs					
	1.1			≤ 60	≤ 200	7075	
	1.2	Aluminum wrought alloys		≤ 105	≤ 350	6061-T6 / 2024-T4	
	1.3	, , , , , , , , , , , , , , , , , , ,		≤ 165	≤ 550		
	1.4	Aluminum cast alloys Si ≤ 7%					
	1.5	Aluminum cast alloys $7\% < Si \le 12\%$					
	1.6	Aluminum cast alloys $12\% < Si \le 17\%$					
	0.1	Copper alloys		. 100	- 400		
	2.1	Copper zine elleve (brees long chipping)		≤ 120 < 165	<u>≤ 400</u> < 550		
	2.2	Copper-zinc alloys (brass, long-chipping)		≤ 165 < 165	<u>< 550</u>		
	2.3	Copper-aluminum alloys (alu bronze, long-chinning)		< 235	< 800		
	2.5	Copper-tin alloys (tin bronze, long-chipping)		< 205	< 700		
N	2.6	Copper-tin alloys (tin bronze, short-chipping)		≤ 120	< 400 ≤ 400		
	2.7	Special copper allows		≤ 180	≤ 600		
	2 .8	Magnaeium allove	≤ 44	≤ 415	≤ 1400		
	3.1	Magnesium wrought allovs		< 150	< 500		
	3.2	Magnesium cast alloys		< 150	< 500		
		Synthetics					
	4.1	Duroplastics (short-chipping)					
	4.2	Thermoplastics (long-chipping)					
	4 .3 4 .4	Fibre-reinforced synthetics (fibre content ≤ 30%) Fibre-reinforced synthetics (fibre content > 30%) Special materials					
	5.1	Graphite					
	5.2	Tungsten-copper alloys					
	5 .3	Composite materials					
		Special materials					
		Titanium alloys		105	150	001/000	
	1.1	Pure titanium	< 07	≤ 135	≤ 450	CP1 / CP2	
	1.3	Titanium alloys	≤ 27	≤ 203 ≤ 370	≤ 1250	0AL4V	
S		Nickel alloys, cobalt alloys and iron alloys					
9	2.1	Pure nickel	04	≤ 180	≤ 600	1.500 740	
	2.2	Nickel-base alloys	≤ 31	≤ 295	≤ 1000	Monel 500, /18 Inconel annealed	
	2.3	,	≤ 49 < 31	≤ 4/0 < 205	≤ 1000	/ 18 Inconei	
	2.4	Cobalt-base alloys	< 49	< 475	< 1600	Havnes 25	
	2.6	Iron-base allovs	≤ 46	≤ 445	≤ 1500	Incoloy 925	
		Hard materials					
	1.1		44 - 50				
H	1.2 1.3 1.4	High strength steels, hardened steels, hard castings	50 - 55 55 - 60 60 - 63				
	1.5		63 - 66				

1. Workpiece Material				
Why so Important????				
Tap Cutting Geometry				
*Rake Angle				
*Profile Relief Angle				

1. Workpiece Material

Why so Important????

Tap Forming Geometry.....

*Forming Lobe Polygon Shape

*Number of Forming Lobes

*Tap Coating Type

Material Specific

Titanium

Nickel

Stainless

3. Hole Type

Through Hole or Blind Hole

Why so Important????

Chips must be transported

4. Thread Depth or Thread Length

Why so Important????

Chips must be transported.....

¾-10 UNC Spiral Flute Tap Thread Depth 1.500 (2xD which is 15 turns) (.750x3.14)x15 = 35 inches each flute 4x35x3 = 424 inches total chip length (35 feet)

4. Thread Depth or Thread Length

```
Why so Important????
```

For Blind Holes..... need to know Max. drill depth vs Min. full thread depth

Form A

Form B

Chamfer length **6-8 threads** for straight flutes

Chamfer length **3,5-5,5 threads** for straight flutes with spiral point

Form C

Form D

Form E

Form F

Chamfer length **2-3 threads** for straight or spiral flutes

Chamfer length **3,5-5 threads** for straight or spiral flutes

Chamfer length **1,5-2 threads** for straight or spiral flutes

Chamfer length **1-1,5 threads** for straight or spiral flutes

20

Chamfer length ≤ 1 thread is called **"SKA"**. The chamfer length of the EMUGE taps is adapted to the respective material in individual cases.

5. Thread Size and Tolerance

¾-10 UNC-2B ¾-16 UNF-3B M8-6H M16x1.5-6H EG 3/8-24 (STI Thread)

Standard Emuge Taps are marked with the appropriate Class of Fit

.... Same as Thread Gages and Part Prints

H & D Limit Values are not marked on Emuge taps

Nominal pitch diameter (basis)

Tapping Cycle Stages

- **1. First cutting stage** of the tap, until all chamfer teeth are in contact with the component
- 2. Cutting torque of the tap which is now cutting with all chamfer teeth
- **3. Braking** of the machine spindle to a complete stop
- **4. Beginning reversal** of the spindle, until there is contact between the back of the tooth and the remaining chip that was cut by the following tooth
- 5. Shearing off of the remaining chip
- 6. Squashing back of the chip root which remains after the remaining chip was sheared off (its size depends on the chamfer relief angle of the tap and the rear cutting angle of the tooth)
- 7. Sliding friction between tap and workpiece

1. Machine Tool (Feed Type)

2. Tap Size Range

3. Tapping Speed

Feed Types / Examples

CNC machine – synchronous feed

Using a minimal length compensation is recommended

NC machine – non synchronous feed

Since there are major compensation errors, a "compensation tap holder" is **required**

Pillar drilling machine – manual feed

Since there is no feed control, a compensation is **mandatory** Exception: When using lead screws a lead control between feed and rotary motion is given.

Influence of Lubrication for Cold-Forming Torque

Good Tap Fluid does not burn & Reduces Tap Torque..... by providing effective Lubrication to the Work Surfaces

Tool recommendation - determined in tests in Toolox[®]

Material	EMUGE MG	Core- hole	Tool type / Geometry (Example)	ltem number (Example)	Vc (m/min)	Coolant	Tool picture
Toolox [®] 33		Blind	Enorm-Z-TIN	C0503700	8 - 12	E/O	
	P 3.1 (980 N/mm ²)	Through	Rek. B-Z-PM-TIN-70	C0208F01	8 - 12	E/O	
		Blind/ Through	Rek. A-Z-TICN	C0109401	8 - 12	E/O	
			IF-Z-SN-PM-TIN-80	C521Z700	10 - 15	E/O	
			IF-STEEL-M-SN-PM-TIN-66	C5217F00	10 - 15	E/O	
40	P 5.1 (1260 N/mm ²)	Blind	Rek. D-TI-TICN	C0459601	5 - 8	E/O	
X®		Through	Rek. B-STEEL-TIN	C0201400	5 - 8	E/O	
olo		Blind/	InnoForm-H-SN-TIN-T26	C521W700	8 - 10	E/O	
To		Through	Rek. A-Z-TICN	C0109401	5 - 8	E/O	
44		Blind	Rek. D-TI-TICN	C0459601	3 – 5	E/O/P	
X [®]	H 1.1	Through	Rek. C-TI-TICN	C0309601	3 - 5	E/O/P	
olo	(45 HRC) (1450 N/mm²)	(45 HRC) Blind/	Rek. A-HCUT-TICN	C010J901	3 - 4	E/O/P	Anna an anna an an an an an an an an an a
To		Through	InnoForm-H-SN-TIN-T26	C521W700	3 - 6	(E)/O / P	

Tapping Speeds and Feeds

Tap Feeds are fixed = Thread Pitch (pitch x rpm)

Tap Speeds range between 3 to 262 SFM......Good Luck!!!!

*Workpiece Material

*Machine and Tap Holder Types

*Coolant Type and Delivery

Tom Kowalski Product Application Specialist Northeast Regional Manager

